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SUMMARY

We develop the energy norm a posteriori error analysis of exactly divergence-free discontinuous RTk/Qk
Galerkin methods for the incompressible Navier–Stokes equations with small data. We derive upper and
local lower bounds for the velocity–pressure error measured in terms of the natural energy norm of the
discretization. Numerical examples illustrate the performance of the error estimator within an adaptive
refinement strategy. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper, we derive a residual-based energy norm a posteriori error estimator for exactly
divergence-free discontinuous Galerkin (DG) methods for the incompressible Navier–Stokes
equations

−��u+(u·∇)u+∇ p = f in �⊂R2

∇ ·u = 0 in �

u = 0 on �=��

(1)
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1094 G. KANSCHAT AND D. SCHÖTZAU

Here, �>0 is the kinematic viscosity, u the velocity, p the pressure, and f∈L2(�)2 an external
body force. The domain � is assumed to be a Lipschitz polygon in R2. Throughout, we assume that
�−2‖f‖L2(�) is sufficiently small. Then the Navier–Stokes system has a unique solution (u, p)∈
H1
0 (�)2×L2

0(�), where H1
0 (�)2 is the usual vector-valued Sobolev space with zero boundary

values and L2
0(�) is the space of square integrable functions with vanishing mean value. Moreover,

we have the stability bound

‖∇u‖L2(�)�CP�−1‖f‖L2(�) (2)

with CP>0 denoting the Poincaré constant of �.
Exactly divergence-free DG methods for the incompressible Navier–Stokes equations (1) were

recently introduced in [1]. They are based on divergence-conforming finite element spaces for
the approximation of the velocity, such as Brezzi–Douglas–Marini (BDM) or Raviart–Thomas
(RT) spaces, and on matching discontinuous spaces for the approximation of the pressure. The
H1-conformity of the velocity approximation is then enforced weakly using the DG approach.
The resulting methods have been shown to be locally conservative, inf–sup stable, and optimally
convergent. They were inspired by the use of BDM elements for the analysis of DG schemes in [2].
In the lowest order case, they have been shown to be closely related to the well-known marker and
cell (MAC) scheme; cf. [3]. The use of element pairs beyond BDM and RT is discussed in [4]. In
this article, we will focus on RT elements but remark here that the analysis applies in exactly the
same way to BDM elements.

The exactly divergence-free methods in [1] originated from the ideas introduced in [5]. There, an
element-by-element post-processing procedure was devised to render DG velocity approximations
exactly divergence free. The divergence-conforming velocity approximations in [1] can then be
understood and analyzed in the setting of [5], with a post-processing operator that is equal to the
identity operator. The work [5], in turn, builds upon the earlier papers [6–8], where DG methods
for linear incompressible flow problems were proposed and analyzed.

In this paper, we develop the energy norm a posteriori error estimation for the RTk/Qk method
proposed in [1] for quadrilateral meshes. Here, the approximation of the velocity is based on
RT elements of order k, whereas the pressure is discretized using tensor product polynomials of
order k. We derive a residual-based error estimator that is both reliable and efficient for the error
measured in a natural energy norm that includes the broken H1-norm for the error in the velocity
and the L2-norm for the error in the pressure. Our technique of proof relies on the approach
introduced in [9] for the Stokes problem. Let us also mention that a posteriori error analyses for
DG methods applied to elliptic problems can be found, e.g. in [10–16] and the references therein.

The outline of this paper is as follows. In Section 2, we describe the RTk/Qk methods from [1] and
establish the stability properties that are crucial for our analysis. For simplicity, we restrict ourselves
to the interior penalty approach for the discretization of the diffusive terms. In Section 3, we present
our energy norm error estimator and state our main result. The proof of these results is carried out
in Section 4. In Section 5, we present a series of numerical experiments that show the usefulness of
our estimator in adaptive refinement strategies. Finally, we conclude our presentation in Section 6.

2. DIVERGENCE-FREE DG METHODS

In this section, we recall the RTk/Qk–DG method for the Navier–Stokes equations. We
follow [1, 5]. However, instead of the local discontinuous Galerkin (LDG) approach presented
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ENERGY NORM A POSTERIORI ERROR ESTIMATION 1095

there, we employ the interior penalty (IP) method for the discretization of the Laplace
operator.

2.1. Discretization

We assume that the domain � can be partitioned into shape-regular rectangular meshes Th ={K }.
The diameter of an element K is denoted by hK , and the mesh size parameter h of Th is the
piecewise constant function h with h|K =hK . We will assume that each edge of a mesh cell K is
a boundary edge, an edge of a neighboring cell, or consists of two equally long edges of refined
neighboring cells. The latter corresponds to the so-called one-irregular meshes with one ‘hanging
node’ on refined edges. We further assume that the neighboring nodes of hanging nodes are not
hanging themselves. The adaptively generated meshes in our numerical experiments satisfy these
properties, see [17].
Remark 2.1
The inf–sup stability of discretizations with hanging nodes using RT elements is in part still an
open question. For quadrilaterals with one-irregular meshes, a stability proof exists only for the
pair RTk/Qk defined in (3) below with k�2; see [18]. Nevertheless, we conjecture from our
computational results that stability also holds for k=1. For triangles with hanging nodes, there
is no stability result for the divergence-free elements proposed in [1]; on the other hand, locally
refined triangular meshes without hanging nodes can be obtained using bisection. The results below
are all to be read in view of the restrictions cited in this remark.

We will use the standard average and jump operators. To define them, we denote by E(Th)

the set of all edges in Th , by EI (Th) the set of all interior edges, and by EB(Th) the set of all
boundary edges. The length of an edge E is denoted by hE .

Let now K+ and K− be two adjacent elements of Th that share an interior edge E=�K+∩
�K− ∈EI (Th). Let � be any piecewise smooth function (matrix, vector, or scalar valued), and let
us denote the traces of � on E taken from within the interior of K± by �±. We then define the
average operator {{·}} across the edge E as

{{�}}= 1
2 (�

++�−)

Further, let �, u, and p be a piecewise smooth matrix-valued, vector-valued and scalar-valued
functions, respectively. The jumps [[·]] of these functions across E are defined as

[[�n]]=�+n++�−n−, [[u⊗n]]=u+⊗n++u−⊗n−, [[pn]]= p+n++ p−n−

where n± denote the outward unit normal vectors on the boundary �K± of the elements K±.
Analogously, for a boundary edge E ∈EB(Th), we set {{�}}=�, [[�n]]=�n, [[u⊗n]]=u⊗n, and
[[pn]]= pn. Here, n is the outward unit normal on �. Finally, if the jump appears quadratically,
we abbreviate [[u]]=u+−u−.

For an approximation order k�1, we then seek DG approximations to the Navier–Stokes equa-
tions in the finite element space Vh×Qh , where

Vh = {v∈H(div;�) :v|K ∈RTk(K ),K ∈Th,v ·n=0 on �}
Qh = {q∈L2

0(�) :q|K ∈Qk(K ),K ∈Th}
(3)
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1096 G. KANSCHAT AND D. SCHÖTZAU

with Qk(K ) denoting the tensor product polynomials of degree k on K , RTk(K )⊃Qk(K )2 the
RT polynomials of order k on K , see, e.g. [19] and the references therein, and

H(div;�)={v∈L2(�)2 :∇ ·v∈L2(�)}
A crucial property of the pair Vh×Qh is that, on the meshes considered,

∇ ·Vh ⊂Qh (4)

see the discussion in [1, Section 2.2.2].
We consider the DG method: find (uh, ph)∈Vh×Qh such that

Ah(uh,v)+Oh(uh;uh,v)+Bh(v, ph) =
∫

�
f ·vdx

Bh(uh,q) = 0

(5)

for all (v,q)∈Vh×Qh .
The forms Ah , Oh , and Bh are associated with the discretizations of the Laplacian, the convective

term, and the incompressibility condition, respectively.
The form Bh is given by

Bh(v,q)=−
∫

�
∇ ·vq dx

From the second equation in (5), it then follows that ∇ ·uh is orthogonal to all pressures in Qh .
Hence, inclusion (4) implies that uh is indeed exactly divergence free.

For the form Ah , we choose the classical (symmetric) IP discretization defined by

Ah(u,v) = ∑
K∈Th

∫
K

�∇u :∇vdx− ∑
E∈E(Th)

∫
E

[[v⊗n]] : {{�∇u}}ds

− ∑
E∈E(Th)

∫
E

[[u⊗n]] : {{�∇v}}ds+ ∑
E∈E(Th)

�E�
∫
E
[[u]]·[[v]]ds

The parameter �E is the IP parameter stabilizing the DG form. In order to ensure the coercivity
of the form Ah , it has to be chosen sufficiently large. For a boundary edge E ∈EB(Th) of a mesh
cell K , its lower limit can be determined by an inverse estimate and is of the form s/h⊥, where
h⊥ is the length of K orthogonal to E and s depends on the polynomial degree and the shape of
the cell. In particular, for rectangular mesh cells, stability is obtained for

�E>
k(k+1)

2h⊥
and we usually choose twice the value in our numerical tests. On interior edges, stability is obtained
by taking 1

2 of the mean value of this value from both cells, respectively. We will always assume
that this parameter is chosen such that stability is guaranteed.

We point that, for the discretization of the Laplace operator, several other DG methods can be
chosen, for which our results hold true as well; see the discussions in [1, 18, 20, Table I]. For these
methods, we at least require stability and consistency; for our purposes, we considered the LDG
and (symmetric) IP methods.
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Finally, to define the convective form Oh , let w be a piecewise smooth and divergence-free flow
field in the space

J(Th)={v∈H(div;�) :∇ ·v≡0 in �,v|K ∈H1(K )2,K ∈Th}
Clearly, the discrete velocity field uh belongs to this space. We then take Oh to be the standard
upwind form introduced in [21, 22]

Oh(w;u,v)=− ∑
K∈Th

∫
K
(w ·∇)v ·udx+ ∑

K∈Th

∫
�K

[
w ·nK {{u}}− 1

2
|w ·nK |(ue−u)

]
·vds

Here, ue denotes the exterior trace of u taken over the edge under consideration and set to zero
on the boundary. Upon integration by parts, we also have

Oh(w;u,v)= ∑
K∈Th

∫
K

(w ·∇)u·vdx+ ∑
K∈Th

∫
�K

[
1

2
w ·nK (ue−u)− 1

2
|w ·nK |(ue−u)

]
·vds

This completes the definition of the DGmethods for the incompressible Navier–Stokes equations.
We point out that, as uh is exactly divergence free, the resulting DGmethods are locally conservative
and energy stable, cf. [1, 5].

2.2. Stability properties

In this section, we recapitulate the main stability properties of the DG forms from [1, 5, 18].
First, we rewrite the IP form Ah in the form

Ah(u,v)=
∫

�
�∇u :∇vdx−

∫
�

�∇u :L(v)dx−
∫

�
�∇v :L(u)dx+ ∑

E∈E(Th)

�E�
∫
E
[[u]]·[[v]]ds

where the lifting operator L :Vh →�h is given by∫
�
L(v) :�dx= ∑

E∈E(Th)

∫
E

[[v⊗n]] : {{�}}ds ∀�∈�h

with

�h ={�∈L2(�)2×2 :�|K ∈Qk+1(K )2×2,K ∈Th}
We can now easily extend the form Ah to the space V(h)=H1

0 (�)+Vh using the same definition
of the lifting operator. This space is endowed with the broken H1-norm

‖u‖21,h = ∑
K∈Th

‖∇u‖2L2(K )
+ ∑

E∈E(Th)

�E�‖[[u]]‖2L2(E)

Then, the form Ah satisfies the following continuity and coercivity properties: If the IP parameter
is chosen as above, then there are constants ca>0 and �>0, independent of the viscosity and the
mesh size, such that

Ah(u,v)��ca‖u‖1,h‖v‖1,h, u,v∈V(h) (6)

Ah(u,u)���‖u‖21,h, u∈Vh (7)
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1098 G. KANSCHAT AND D. SCHÖTZAU

The form Oh is Lipschitz continuous: There is a constant c0>0, independent of the viscosity
and the mesh size, such that

|Oh(w1;u,v)−Oh(w2;u,v)|�c0‖w1−w2‖1,h‖u‖1,h‖v‖1,h (8)

for all w1,w2∈J(Th), u∈V(h), and v∈V(h). This statement has been proven in [5, Proposi-
tion 4.2] for v∈Vh . Using similar arguments, it can be readily seen that it also holds for v∈H1

0 (�)2.
Moreover, there holds

Oh(w;u,u)�0 (9)

for w∈J(Th) and u∈Vh or u∈H1
0 (�)2.

Finally, the form Bh is continuous and satisfies the discrete inf–sup condition: There exist
constants cb>0 and �>0, independent of the viscosity and the mesh size, such that

|Bh(u, p)|�cb‖u‖1,h‖p‖L2(�), u∈V(h), p∈L2(�) (10)

sup
u∈Vh

Bh(u, p)

‖u‖1,h ��‖p‖L2(�), p∈Qh (11)

While the continuity of Bh is obvious, the inf–sup condition follows from the results in [18]. It
holds on regular meshes for any k. For k�2, it holds on the irregular meshes considered in this
paper. As pointed out in Remark 2.1, the stability on irregular meshes for k=0,1 remains an
open problem. We further refer the reader to [2] for the stability of BDM elements on conforming
triangular meshes.

With these stability properties at hand and by proceeding as in the analysis presented in
[1, Theorem 3.1] for triangular elements, we readily obtain the following result: If �−2‖f‖L2(�) is
sufficiently small, then the DG discretization (5) has a unique solution (uh, ph)∈Vh×Qh and we
have the a priori error estimate

‖u−uh‖1,h+‖p− ph‖L2(�)�C(‖hku‖Hk+1(Th)
+‖hk p‖Hk(Th)

)

with a constant C>0 independent of the mesh size. Here, the ‖.‖Hk(Th)
denotes the cellwise

Hk-norm. For later use, we also note that the discrete velocity uh satisfies the bound

‖uh‖1,h�cp�
−1‖f‖L2(�) (12)

where cp is the constant in the discrete Poicaré inequality: There is cp>0 independent of the mesh
size such that

‖v‖L2(�)�cp‖v‖1,h ∀v∈Vh (13)

see [23, Lemma 2.1; 24].

2.3. Additional stability properties

In this section, we establish two additional stability results that are key in our a posteriori error
analysis. To that end, we introduce the global form

Ah(w)(u, p;v,q)= Ah(u,v)+Oh(w;u,v)+Bh(v, p)−Bh(u,q)
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for any w∈J(Th), (u, p), and (v,q) in V(h)×L2(�). We then rewrite the DG methods in the
form: Find (uh, ph)∈Vh×Qh such that

Ah(uh)(uh, ph;v,q)=
∫

�
f ·vdx ∀(v,q)∈Vh×Qh (14)

We further introduce the product norm

|||(u, p)|||2=�‖u‖21,h+�−1‖p‖2L2(�)

and define

c̄p =max{CS,cp�
−1}

In the following, we consider small data and assume that

c0c̄p�
−2‖f‖L2(�)<1 (15)

Then the following continuity and stability properties hold.

Lemma 2.1
Assume (15) and let w∈J(Th) satisfy

‖w‖1,h�c̄p�
−1‖f‖L2(�)

Then there is a continuity constant cA>0, only depending ca and cb, such that

|Ah(w)(u, p;v,q)|�cA|||(u, p)||| |||(v,q)|||
for all u,v∈V(h) and p,q∈L2(�).

Proof
The assertion follows from the continuity of Ah and Bh , the Cauchy–Schwarz inequality and the
fact that

|Oh(w;u,v)| � c0‖w‖1,h‖u‖1,h‖v‖1,h
� c0c̄p�

−2‖f‖L2(�)�
1/2‖u‖1,h�1/2‖v‖1,h��1/2‖u‖1,h�1/2‖v‖1,h

which is due to (8), the bound on w and the smallness assumption (15). �

Lemma 2.2
Assume (15) and let w∈J(Th) satisfy

‖w‖1,h�c̄p�
−1‖f‖L2(�)

Then there is constant �>0, only depending on �, such that for any tuple (u, p)∈H1
0 (�)2×L2

0(�)

there is (v,q)∈H1
0 (�)2×L2

0(�) with |||(v,q)|||�1 and

Ah(w)(u, p;v,q)��|||(u, p)|||
Proof
Fix (u, p)∈H1

0 (�)2×L2
0(�). We have

Ah(w)(u, p;u, p)= Ah(u,u)+Oh(w;u,u)��‖u‖21,h (16)
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1100 G. KANSCHAT AND D. SCHÖTZAU

Here, we have used (9) and that, for u∈H1
0 (�)2,

Ah(u,u)=�‖∇u‖2L2(�)
=�‖u‖21,h

Further, due to the continuous inf–sup condition, see [19, 25], there is a field v̄∈H1
0 (�)2 that

satisfies

Bh(v̄, p)�C��−1‖p‖2L2(�)
, �1/2‖v̄‖1,h��−1/2‖p‖L2(�)

with C�>0 denoting the continuous inf–sup constant, which only depends on �. Then,

Ah(w)(u, p; v̄,0) = Ah(u, v̄)+Oh(w;u, v̄)+Bh(v̄, p)

�C��−1‖p‖2L2(�)
−|Ah(u, v̄)|−|Oh(w;u, v̄)|

The H1-conformity of the functions u, v̄ and the bound for v̄ yield

|Ah(u, v̄)|��‖u‖1,h‖v̄‖1,h�‖u‖1,h‖p‖L2(�)

Furthermore, employing the continuity of Oh , the bounds for w and v̄ and the smallness assumption
(15), we obtain

|Oh(w;u, v̄)|�c0�
−1‖w‖1,h‖u‖1,h‖p‖L2(�)�‖u‖1,h‖p‖L2(�)

Hence, the inequality |ab|�(	/2)a2+(1/2	)b2 now gives

Ah(w)(u, p; v̄,0) �C��−1‖p‖2L2(�)
−2‖u‖1,h‖p‖L2(�)

�
(
C�− 1

	

)
�−1‖p‖2L2(�)

−�	‖u‖21,h (17)

for any 	>0.
From (16) and (17), we conclude that, for 
>0,

Ah(w)(u, p;u+
v̄, p) =Ah(w)(u, p;u, p)+
Ah(w)(u, p; v̄,0)

� (1−	
)�‖u‖21,h+


(
C�− 1

	

)
�−1‖p‖2L2(�)

Taking 	=2/C� and 
=C�/4, we obtain that

Ah(w)(u, p;u+
v̄, p)�min

{
1

2
,
C2

�

8

}
|||(u, p)|||2 (18)

On the other hand, using the triangle inequality and the bound for v̄, it can be readily seen that

|||(u+
v̄, p)|||�
(
1+C�

4

)
|||(u, p)||| (19)

The assertion now readily follows from (18) and (19). �
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3. ENERGY NORM A POSTERIORI ERROR ESTIMATION

In this section, we present a reliable and efficient energy norm error estimator for the exactly
divergence-free DG approximations of the Navier–Stokes equation with small data.

3.1. Error indicators

We begin by introducing the error indicators. To that end, let (uh, ph) be the DG approximation
of (5). Let fh be a piecewise polynomial approximation of f, possibly discontinuous across elemental
edges. For any element K ∈Th and interior edge E ∈EI (Th), we introduce the residuals

RK =(fh+��uh−(uh ·∇)uh−∇ ph)|K
RE =[[(ph I −�∇uh)n]]|E

respectively. Here, the matrix I is the identity matrix in R2×2. For each K ∈Th , we then introduce
the local error indicator �K

�2K =�2RK
+�2EK

+�2JK (20)

where

�2RK
= �−1h2K ‖RK ‖2L2(K )

�2EK
= 1

2

∑
E∈�K\�

�−1hE‖RE‖2L2(E)

�2JK = 1

2

∑
E∈�K

�E�‖[[uh]]‖2L2(E)

(21)

Finally, we introduce the data oscillation term

OK =(f−fh)|K , K ∈Th

and define

�2
K =�−1h2K ‖OK ‖2L2(K )

(22)

The error estimator � is now given by

�=
( ∑
K∈Th

�2K

)1/2

(23)

whereas the data error � is defined by

�=
( ∑
K∈Th

�2
K

)1/2

(24)
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1102 G. KANSCHAT AND D. SCHÖTZAU

3.2. Reliability

We now state that the error indicator � gives rise to a reliable energy norm a posteriori error
estimator, up to the data approximation term �.

We assume that the data are small and satisfy

max{1,�−1}c0c̄p�−2‖f‖L2(�)� 1
2 (25)

The following result holds.

Theorem 3.1
Assume (25). Let (u, p) be the solution of the Navier–Stokes equation (1) and (uh, ph)∈Vh×Qh
the DG approximation obtained by (5). Let � and� be the error estimator and the data approximation
term in (23) and (24), respectively. Then the following a posteriori error bound holds

|||(u−uh, p− ph)|||�C(�+�)

with a constant C>0 that is independent of the viscosity and the mesh size.

The proof of this theorem will be presented in Section 4.1.
Next, we state that the local error indicators can be bounded from above by the local energy

error, up to data approximation errors. Hence, the estimator � is also efficient. We first consider
the residuals �RK

and �EK
. To that end, we define 
K by


K ={K ′ ∈Th :K and K ′ share an edge or a vertex}
Theorem 3.2
Assume (25). Let (u, p) be the solution of the Navier–Stokes equation (1) and (uh, ph)∈Vh×Qh
the DG approximation obtained by (5). Let �RK

, �EK
and �K be defined in (21) and (22),

respectively. For any element K ∈Th , there holds

�RK
�C(�1/2‖u−uh‖H1(K )+�−1/2‖p− ph‖L2(K )+�K )

�EK
�C

∑
K∈
K

(�1/2‖u−uh‖H1(K )+�−1/2‖p− ph‖L2(K )+�K )

with a constant C>0 that is independent of K , the viscosity and the mesh size.

The proof of this theorem will be given in Sections 4.2 and 4.3.
Finally, let us note that we trivially have efficiency for the jump residuals �JK . Indeed, since

the jumps of the exact solution vanish, there holds

�2JK = 1

2

∑
E∈�K\�

�E�‖[[u−uh]]‖2L2(E)
+ ∑

E∈�K∩�
�E�‖[[u−uh]]‖2L2(E)

As a consequence of the above results, we have the following lower bound of the energy error.

Corollary 3.1
Assume (25). Let (u, p) be the solution of the Navier–Stokes equation (1) and (uh, ph)∈Vh×Qh
the DG approximation obtained by (5). Let � and� be the error estimator and the data approximation
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term in (23) and (24), respectively. Then the following efficiency bound holds:

��C(|||(u−uh, p− ph)|||+�)

with a constant C>0 that is independent of the viscosity and the mesh size.

4. PROOFS

In this section, we present the proofs of Theorems 3.1 and 3.2.

4.1. Proof of Theorem 3.1

We introduce the discontinuous RT space Ṽh ={v∈L2(�)2 :v|K ∈RTk(K ),K ∈Th}. Then,
following [9, Section 4], we define Vc

h = Ṽh∩H1
0 (�)2. The orthogonal complement of Vc

h in Ṽh

with respect to the norm ‖·‖1,h is denoted by V⊥
h . Hence, we have Ṽh =Vc

h⊕V⊥
h .

If uh is the DG velocity approximation, we can decompose it uniquely into

uh =uch+urh (26)

with uch ∈Vc
h and urh ∈V⊥

h . Then, since uh ∈Vh and uch ∈Vc
h ⊂Vh , we must also have that urh =

uh−uch ∈Vh . By employing arguments analogous to those in [9, Section 4; 16] for the discontinuous
space Ṽh , the following result is obtained: there is ce>0, independent of the viscosity and the
mesh size, such that

�1/2‖urh‖1,h�ce

( ∑
K∈Th

�2JK

)1/2

(27)

Let now (u, p) be the solution of the Navier–Stokes equations, and (uh, ph) the DG solution.
We denote the error of the DG approximation by

(eu,ep)=(u−uh, p− ph)

and also set ecu =u−uch .

Lemma 4.1
Assume (25). Then there is (v,q)∈H1

0 (�)2×L2
0(�) such that |||(v,q)|||�1 and

�

2
|||(eu,ep)|||�

∫
�
f ·(v−vh)dx−Ah(uh)(uh, ph;v−vh,q)+(cA+�)ce

( ∑
K∈Th

�2JK

)1/2

for any vh ∈Vh .

Here, note that, as uh is exactly divergence free, an approximation qh of q is not needed (and
is set to zero).
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Proof
From the triangle inequality and (27), we have

�|||(eu,ep)||| � �|||(ecu,ep)|||+�|||(urh,0)|||

� �|||(ecu,ep)|||+�ce

( ∑
K∈Th

�2JK

)1/2

Furthermore, from the stability estimate (12), the fact that (25) implies condition (15), the inf–
sup condition in Lemma 2.2 is applicable to (ecu,ep). It follows that there is a test function
(v,q)∈H1

0 (�)2×L2
0(�) such that |||(v,q)|||�1 and

�|||(ecu,ep)||| �Ah(uh)(ecu,ep;v,q)

=Ah(uh)(eu,ep;v,q)+Ah(uh)(urh,0;v,q)

�Ah(uh)(eu,ep;v,q)+cA|||(urh,0)|||

�Ah(uh)(eu,ep;v,q)+cAce

( ∑
K∈Th

�2JK

)1/2

Here, we have also used the continuity of Ah in Lemma 2.1 and bound (27). As

A(uh)(u, p;v,q)=Ah(u)(u, p;v,q)−Oh(eu;u,v)

we conclude that

�|||(eu,ep)||| �Ah(u)(u, p;v,q)−Oh(eu;u,v)

−Ah(uh)(uh, ph;v,q)+(cAce+�ce)

( ∑
K∈Th

�2JK

)1/2

(28)

Owing to the continuity of Oh in (8), the stability bound (2) and the smallness assumption (25),
we have

|Oh(eu;u,v)| � c0‖eu‖1,h‖u‖1,h‖v‖1,h
� c0c̄p�

−2‖f‖L2(�)�
1/2‖eu‖1,h�1/2‖v‖1,h

� �

2
�1/2‖eu‖1,h

Hence, this term can be brought to the left-hand side of (28). Then, we have that

Ah(u)(u, p;v,q)=
∫

�
f ·vdx

Therefore, we obtain

�

2
|||(eu,ep)|||�

∫
�
f ·vdx−Ah(uh)(uh, ph;v,q)+(cAce+�ce)

( ∑
K∈Th

�2JK

)1/2
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The assertion now follows from this inequality by noting that

Ah(uh)(uh, ph;vh,0)−
∫

�
f ·vh dx=0

for all vh ∈Vh . �

Lemma 4.2
For (v,q)∈H1

0 (�)2×L2
0(�) there is vh ∈Vh such that∫

�
f ·(v−vh)dx−Ah(uh)(uh, ph;v−vh,q)�C�1/2‖∇v‖L2(�)(�+�)

with a constant C>0 that is independent of the viscosity and the mesh size.

Proof
We set nv =v−vh , with vh ∈Vc

h to be selected. Then,

T =
∫

�
f ·nv dx−Ah(uh)(uh, ph;nv,q)

=
∫

�
f ·nv dx−Ah(uh,nv)−Oh(uh;uh,nv)−Bh(nv, ph)

Here, we have used that Bh(uh,q)=0, thanks to the fact that uh is divergence free. Integration by
parts yields

−Ah(uh,nv) = −�
∫

�
(∇uh−L(uh)) :∇nv dx

�
∑

K∈Th

(∫
K

��uh ·nv dx−
∫

�K\�
(�∇uh)nK ·nv ds

)
+�1/2‖L(uh)‖L2(�)�

1/2‖∇nv‖L2(�)

with nK denoting the unit outward normal vector on �K . There holds

�1/2‖L(uh)‖L2(�)�cl

( ∑
K∈Th

�2JK

)1/2

for a constant cl>0 that is independent of the viscosity and the mesh size, see [18, Lemmas 7.2
and 7.4]. We further have

−Bh(nv, ph)=− ∑
K∈Th

(∫
K

∇ ph ·nv dx− ∑
K\�

∫
�K

(phnK ) ·nv ds
)

and

−Oh(uh;uh,nv)=− ∑
K∈Th

∫
K
(uh ·∇)uh ·nv dx

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1093–1113
DOI: 10.1002/fld



1106 G. KANSCHAT AND D. SCHÖTZAU

Combining the above relations, we conclude that

T �
∑

K∈Th

∫
K
(RK +OK ) ·nv dx+ ∑

E∈EI (Th)

∫
E
RE ·nv ds

+cl

( ∑
K∈Th

�2JK

)1/2

�1/2‖∇nv‖L2(�) (29)

We now choose vh ∈Vc
h as the standard Scott–Zhang interpolant of v, see, e.g. [25]. It satisfies∑

K∈Th

(h−2
K ‖v−vh‖2L2(K )

+‖∇(v−vh)‖2L2(K )
)�C‖∇v‖2L2(�)

(30)

and ∑
E∈EI (Th)

h−1
E ‖v−vh‖2L2(E)

�C‖∇v‖2L2(�)
(31)

Note that on an edge with a hanging node we use the interpolant from the unrefined side in order to
maintain conformity. The assertion now follows from (29), by using the weighted Cauchy–Schwarz
inequality and the approximation properties in (30)–(31). �

Theorem 3.1 is an immediate consequence of Lemmas 4.1 and 4.2.

4.2. Efficiency bound for �RK

In this section, we prove the efficiency bound for �RK
stated in Theorem 3.2. We do so by

employing the bubble function technique introduced in [26, 27].
Let K be an element of Th . We denote by bK the standard polynomial bubble function on K .

Let now v be a (vector-valued) polynomial function on K ; then there exists a constant C>0
independent of v and K such that

‖bK v‖L2(K )�C‖v‖L2(K ) (32)

‖v‖L2(K )�C‖b1/2K v‖L2(K ) (33)

‖∇(bK v)‖L2(K )�Ch−1
K ‖v‖L2(K ) (34)

‖bK v‖L∞(K )�Ch−1
K ‖v‖L2(K ) (35)

The proof of (32) and (33) is given in [26, Lemma 4.1]. The proof of (34) and (35) can be obtained
by similar arguments, see [28, Theorems 2.2 and 2.4].

Fix an element K ∈Th and set Vb=bKRK . By (33), the definition of the data approximation
term OK , and the fact that (u, p) solves the Navier–Stokes equations, we have

C‖RK ‖2L2(K )
� ‖b1/2K RK ‖2L2(K )

=
∫
K
RK ·Vb dx

=
∫
K

(f+��uh−(uh ·∇)uh−∇ ph)·Vb dx−
∫
K
OK ·Vb dx
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Hence,

C‖RK ‖2L2(K )
�T1+T2+T3 (36)

where

T1=
∫
K
(−��eu+∇ep) ·Vb dx

T2=
∫
K
((u·∇)u−(uh ·∇)uh) ·Vb dx

T3=−
∫
K
OK ·Vb dx

To bound T1, we first integrate by parts over K and use the Cauchy–Schwarz inequality:

T1�C�1/2‖∇Vb‖L2(K )(�
1/2‖∇eu‖L2(K )+�−1/2‖ep‖L2(K ))

Upon application of (34), we then obtain

T1�C�1/2h−1
K ‖RK ‖L2(K )(�

1/2‖∇eu‖L2(K )+�−1/2‖ep‖L2(K )) (37)

For the term T2, we proceed as follows. By the Cauchy–Schwarz inequality and (35), we have

T2 =
∫
K
((eu ·∇)u+(uh ·∇)eu) ·Vb dx

�C‖Vb‖L∞(K )‖eu‖H1(K )(‖∇u‖L2(K )+‖uh‖L2(K ))

�Ch−1
K ‖RK ‖L2(K )‖eu‖H1(K )(‖∇u‖L2(K )+‖uh‖L2(K ))

The stability bound (2) and the smallness assumption (25) then yield

‖∇u‖L2(K )�c̄p�
−1‖f‖L2(�) =c−1

0 c0c̄p�
−1‖f‖L2(�)�C�

From the discrete Poincaré inequality (13) and the bound (12), we conclude similarly that

‖uh‖L2(K )�‖uh‖L2(�)�cp‖uh‖1,h�cpc̄p�
−1‖f‖L2(�)�C�

Hence,

T2�C�1/2h−1
K ‖RK ‖L2(K )�

1/2‖eu‖H1(K ) (38)

Finally, for the term T3, we use (32) and conclude that

T3�C‖f−fh‖L2(K )‖Vb‖L2(K )�C‖f−fh‖L2(K )‖RK ‖L2(K ) (39)

We now combine (36) with the bounds in (37), (38), and (39), divide the resulting estimate by
‖RK ‖L2(K ) and multiply it with �−1/2hK . This yields

�RK
=�−1/2hK ‖RK ‖L2(K )�C(�1/2‖eu‖H1(K )+�−1/2‖ep‖L2(K )+�K ) (40)

This is the desired bound for �RK
.
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4.3. Efficiency bound for �EK

Next, we show the efficiency of �EK
stated in Theorem 3.2.

Consider an interior edge E that is shared by two elements K and K ′. We denote by bE the
standard polynomial bubble function on E . Let 
E ={K ,K ′}. If E is a regular edge, we set K̃ =K ′.
If one vertex of E is a hanging node, we may assume without loss of generality that E is an entire
edge of K . We then denote by K̃ ⊂K ′ the largest rectangle contained in K ′ so that E is also an
entire edge of K̃ .

Let now 
̃E ={K , K̃ }. If w is a (vector-valued) polynomial function on E , then there exists a
constant C>0 independent of w and hE such that

‖w‖L2(E)�C‖b1/2E w‖L2(E) (41)

Furthermore, there exists an extension wb∈H1
0 (K ∩ K̃ )2 such that wb|E =bEw and

‖wb‖L2(K )�Ch1/2E ‖w‖L2(E) ∀K ∈ 
̃E (42)

‖∇wb‖L2(K )�Ch−1/2
E ‖w‖L2(E) ∀K ∈ 
̃E (43)

‖wb‖L∞(K )�Ch−1/2
E ‖w‖L2(E) ∀K ∈ 
̃E (44)

with a constant C>0 independent of w and E ; cf. [26, Lemma 4.1; 28, Theorems 2.2 and 2.4].
We extend wb by zero outside the patch formed by the union of K and K̃ .

Let now RE be the edge residual over the edge E . We denote by Wb the extension of bERE
constructed above. By (41), we obtain

C‖RE‖2L2(E)
�‖b1/2E RE‖2L2(E)

=
∫
E
RE ·Wb ds

To estimate the latter integral, we first note that the solution (u, p) of the Navier–Stokes equations
satisfies

[[(pI −�∇u)n]]|E =0

Using this and Green’s formula in each element of the patch 
̃E , we then conclude that∫
E
RE ·Wb ds= ∑

K ∈̃
E

∫
K
((−��eu+∇ep) ·Wb+(ep I −�∇eu) :∇Wb)dx

Consequently, using that (u, p) solves the Navier–Stokes equations, we see that∫
E
RE ·Wb ds = ∑

K ∈̃
E

∫
K
(f+��uh−∇ ph−(uh ·∇)uh) ·Wb dx

+ ∑
K ∈̃
E

∫
K
((uh ·∇)uh−(u·∇)u) ·Wb dx

+ ∑
K ∈̃
E

∫
K
(ep I −�∇eu) :∇Wb dx
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Therefore,

C‖RE‖2L2(E)
�S1+S2+S3 (45)

where

S1= ∑
K ∈̃
E

∫
K
((fh+��uh−(uh ·∇)uh−∇ ph)+(f−fh)) ·Wb dx

S2= ∑
K ∈̃
E

∫
K
((uh ·∇)uh−(u·∇)u) ·Wb dx

S3= ∑
K ∈̃
E

∫
K
(ep I −�∇eu) :∇Wb dx

To bound S1, we employ the Cauchy–Schwarz inequality, bound (42), and take into account the
shape regularity of the mesh. We obtain

S1 �C�1/2h−1/2
E ‖RE‖L2(E)

∑
K ∈̃
E

�−1/2hK ‖fh+��uh−(uh ·∇)uh−∇ ph‖L2(K )

+C�1/2h−1/2
E ‖RE‖L2(E)

∑
K ∈̃
E

�−1/2hK ‖f−fh‖L2(K )

Obviously, there holds ‖·‖L2(K̃ )�‖·‖L2(K ′). Therefore, we conclude that

S1�C�1/2h−1/2
E ‖RE‖L2(E)

∑
K∈
E

(�RK
+�K ) (46)

By proceeding as for the bound of T2 in (38) and using (44), we find that

S2 �C�1/2h−1/2
E ‖RE‖L2(E)

∑
K∈
̃E

�1/2‖eu‖H1(K )

�C�1/2h−1/2
E ‖RE‖L2(E)

∑
K∈
E

�1/2‖eu‖H1(K ) (47)

Similarly, employing (43), the sum S3 can be readily bounded by

S3�C�1/2h−1/2
E ‖RE‖L2(E)

∑
K∈
E

(�1/2‖∇eu‖L2(K )+�−1/2‖ep‖L2(�)) (48)

By combining (45)–(48), by dividing the resulting bound by ‖RE‖L2(E) and by multiplying it

by �−1/2h1/2E , we obtain

�−1/2h1/2E ‖RE‖L2(E)�C
∑

K∈
E

(�1/2‖eu‖H1(K )+�−1/2‖ep‖L2(K ))+C
∑

K∈
E

(�RK
+�K ) (49)

The desired bound for �EK
now follows easily from (40) and (49). This concludes the proof of

Theorem 3.2.
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5. NUMERICAL RESULTS

In this section, we test our error estimate by reproducing known analytical solutions. All the results
were obtained using the deal.II finite element library (see [17]). Let us consider the standard singular
solution of the Stokes problem with �=1 on an L-shaped domain (see [9, 27]). The singularities
at the re-entrant corner are of the form r
 and r
−1 for the velocity and pressure, respectively,
where 
≈0.544. First, we use uniform mesh refinement and do not expect convergence orders
better than 
 in the energy norm in terms of the number of degrees of freedom ndofs. This is
confirmed in Table I for RT3/Q3 and RT2/Q2 elements. The a posteriori error estimate � is of
the same order as the actual energy error, thereby confirming the reliability and efficiency results
from Theorems 3.1 and 3.2, respectively. The ratio of the estimator to error is also shown and is
around 8 for k=2 and close to 14 for k=3.

In order to use the estimate � for adaptive mesh refinement, we use a heuristic criterion based
on cellwise error indicators only. We simply refine the third of the overall cells with the highest
indicators. Strategies like this have been used successfully in many applications, see, e.g. [29]
and references cited therein. While for this strategy, no quantitative convergence estimates like
in [13, 30] are obtained, its implementation is very simple. From the sets �K and �E , we obtain
cell refinement indicators by adding all or half of the face indicator �E to its both neighboring
cells for boundary and interior faces, respectively. Then, the fraction � of the total number of
cells is refined.

In Figure 1, we present results on adaptively refined meshes for degrees 2–4, again for the
Stokes solution. First, this figure shows that the graphs for the estimates are parallel to those of
the error, confirming reliability and efficiency of the estimator. Furthermore, adaptive refinement
allows us to recover the optimal convergence rate of nk/2dofs; here, the fraction � was chosen as
0.15, 0.1, and 0.05 for degrees 2–4, respectively.

As a second example, we reproduce the analytical Navier–Stokes solution by Kovasznay [31] for
a viscosity of �= 1

10 . The estimates and the errors in the norm |||(u, p)||| are reported in Figure 2.
As the solution is smooth, both error graphs are parallel and exhibit first-order convergence. Again,
the estimate is by a factor of 5 larger than the error, even if the viscosity is smaller, confirming
the robustness of our estimate. On the first mesh, the nonlinearity is unresolved and therefore the
estimate cannot capture the error.

The two meshes in Figure 3 show why adaptive mesh refinement yields much better results
for the L-shaped domain than for Kovasznay flow: while refinement is concentrated around the
re-entrant corner in the former case, it extends to a wide area to the left for the latter.

Table I. Convergence history for the Stokes problem on an L-shaped domain with uniform meshes.

RT2/Q2 RT3/Q3

L |||(eu,ep)||| � �
|||(eu,ep)||| Order |||(eu,ep)||| � �

|||(eu,ep)||| Order

4 0.612 4.95 8.1 — 0.427 5.87 13.7 —
5 0.420 3.39 8.1 0.54 0.293 4.02 13.7 0.54
6 0.288 2.32 8.1 0.54 0.201 2.76 13.7 0.54
7 0.197 1.59 8.1 0.54 0.138 1.89 13.7 0.54
8 0.135 1.09 8.1 0.54 0.094 1.30 13.7 0.54
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Figure 1. Errors and estimates for adaptive refinement. Stokes problem on an L-shaped domain.
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Figure 2. Energy error and estimates for Kovasznay flow, �=0.1, uniform and adaptive refinement with
RT1/Q1 elements.

6. CONCLUSION

We presented a residual based a posteriori error estimate for DG approximations to solutions of
the Navier–Stokes equations. These approximations are based on RT elements on locally refined
meshes and yield strongly divergence-free discrete solutions. Therefore, a Helmholtz decomposition
of the error is unnecessary and the estimate takes a simple form. The estimate is shown to be
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Figure 3. Adaptive meshes for the L-shaped domain (RT4/Q4) and for Kovasznay flow (RT1/Q1).

reliable, efficient, and robust with respect to the viscosity, as long as the data are small. Numerical
results show that the constants involved are of moderate size.

Finally, we point out that our analysis applies naturally to exactly divergence-free BDMk/Pk−1
elements on regular triangular meshes; cf. [1].
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8. Cockburn B, Kanschat G, Schötzau D, Schwab C. Local discontinuous Galerkin methods for the Stokes system.
SIAM Journal on Numerical Analysis 2002; 40:319–343.
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